Молекулярные колебания

Молекуля́рные колеба́ния — один из трёх типов молекулярного движения, к которым относятся также трансляционное движение (когда все атомы молекулы смещаются в одном направлении) и вращательное движение (когда молекула поворачивается на определённый угол). В отличие от последних двух случаев, когда геометрия молекулы не меняется, при колебаниях происходит изменение положения атомов относительно друг друга.

В общем случае, молекула из N атомов обладает 3N − 6 нормальными колебаниями, за исключением линейных молекул, у которых 3N − 5 колебаний. Двухатомная молекула частный случай линейной, обладает всего одним колебанием, при котором меняется расстояние между двумя атомами молекулы.

Типы колебаний

В случае многоатомных молекул колебания довольно сложны, и их обычно описывают как комбинацию колебаний разных фрагментов молекулы. Часто это трёхатомные фрагменты молекулы, например, метиленовая группа (−CH2−) в органических молекулах. Можно выделить шесть типов колебаний трёхатомного фрагмента молекулы: симметричное и антисимметричное валентные колебания, ножничное, маятниковое, веерное и крутильное. Для молекул, содержащих только три атома, например, молекулы воды, последние три типа колебаний не существуют, так как они соответствуют перпендикулярных осей (для этих колебаний расстояния между тремя атомами фрагмента не меняются).

Валентные колебания (Stretching) Ножничное (Scissoring)
Симметричное Антисимметричное
image image image
Маятниковое (Rocking) Веерное (Wagging) Крутильное (Twisting)
image image image

Энергия колебаний

Классическая механика

image
Молекула HCl как пример ангармонического осциллятора, колеблющегося с энергией E3. D0 — энергия диссоциации, r0 — длина связи, U — потенциальная энергия. Энергия выражена в волновых числах.

В классической механике колебания молекулы рассматриваются с позиции, что связи между атомами ведут себя как пружины. В гармоническом приближении колебания подчиняются закону Гука: сила image которую требуется приложить для растяжения пружины, прямо пропорциональна величине растяжения image. Константа пропорциональности в случае молекулярных колебаний называется силовой константой image

image

Из второго закона Ньютона эта сила равняется также произведению приведённой массы image и ускорения:

image

Из этого получаем обыкновенное дифференциальное уравнение:

image

Его решением являются гармонические колебания:

image

где image — амплитуда координаты колебания image Для двухатомной молекулы AB приведённая масса image равняется:

image где mA и mB — массы атомов A и B.

В гармоническом приближении потенциальная энергия молекулы image является квадратичной функцией от нормальной координаты. В этом случае силовая константа равна второй производной потенциальной энергии:

image

Квантовая механика

В квантовой механике, так же, как и в классической, потенциальная энергия гармонического осциллятора является квадратичной функцией от нормальной координаты. Из решения уравнения Шрёдингера возможны следующие значения энергии колебаний:

image

где n — квантовое число, которое принимает значения 0, 1, 2… В молекулярной спектроскопии это колебательное квантовое число часто обозначается как v, так как возможны и другие типы энергии молекулы, которым соответствуют другие квантовые числа.

Примечания

  1. J.M. Hollas, Modern Spectroscopy (3rd ed., John Wiley 1996), p21
  2. P.W. Atkins and J. de Paula, Physical Chemistry (8th ed., W.H. Freeman 2006), p. 291 and p. 453

Ссылки

  • image Лекция № 6 «Уровни энергии в молекулах. Колебательные и вращательные уровни энергии»

википедия, вики, книга, книги, библиотека, статья, читать, скачать, бесплатно, бесплатное скачивание, мобильный, телефон, андроид, ios, apple, мобильный телефон, ПК, веб, компьютер, информация о Молекулярные колебания, Что такое Молекулярные колебания? Что означает Молекулярные колебания?

0 ответы

Оставить ответ

Хотите присоединиться к обсуждению?
Не стесняйтесь вносить свой вклад!

Написать ответ

Обязательные поля отмечены звездочкой *