Квадратное уравнение
Квадра́тное уравне́ние — алгебраическое уравнение второй степени с общим видом
в котором — неизвестное, а коэффициенты , и — вещественные или комплексные числа.
Выражение ax² + bx + c называется квадратным трёхчленом. Корень уравнения — это значение неизвестного , обращающее квадратный трёхчлен в ноль, а квадратное уравнение в верное числовое равенство. Также это значение называется корнем самого многочлена .
Элементы квадратного уравнения имеют собственные названия:
- называют первым или старшим коэффициентом,
- называют вторым, средним коэффициентом или коэффициентом при ,
- называют свободным коэффициентом.
Приведённым называют квадратное уравнение, в котором старший коэффициент равен единице. Такое уравнение может быть получено делением всего выражения на старший коэффициент :
Полным называют такое квадратное уравнение, все коэффициенты которого отличны от нуля.
Неполным называется такое квадратное уравнение, в котором хотя бы один из коэффициентов, кроме старшего (либо второй коэффициент, либо свободный член), равен нулю.
Квадратное уравнение является разрешимым в радикалах, то есть его корни могут быть выражены через коэффициенты в общем виде.
Исторические сведения о квадратных уравнениях
Древний Вавилон
Уже во втором тысячелетии до нашей эры вавилоняне знали, как решать квадратные уравнения. Решение их в Древнем Вавилоне было тесно связано с практическими задачами, в основном такими, как измерение площади земельных участков, земельные работы, связанные с военными нуждами; наличие этих познаний также обусловлено развитием математики и астрономии вообще. Были известны способы решения как полных, так и неполных квадратных уравнений. Приведём примеры квадратных уравнений, решавшихся в Древнем Вавилоне, используя современную алгебраическую запись:
Правила решения квадратных уравнений во многом аналогичны современным, однако в вавилонских текстах не зафиксированы рассуждения, путём которых эти правила были получены.
Индия
Задачи, решаемые с помощью квадратных уравнений, встречаются в трактате по астрономии «Ариабхаттиам», написанном индийским астрономом и математиком Ариабхатой в 499 году нашей эры. Один из первых известных выводов формулы корней квадратного уравнения принадлежит индийскому учёному Брахмагупте (около 598 г.); Брахмагупта изложил универсальное правило решения квадратного уравнения, приведённого к каноническому виду: притом предполагалось, что в нём все коэффициенты, кроме
могут быть отрицательными. Сформулированное учёным правило по своему существу совпадает с современным.
Корни квадратного уравнения на множестве действительных чисел
I способ. Общая формула для вычисления корней с помощью дискриминанта
Дискриминантом квадратного уравнения называется величина
.
Условие | |||
Количество корней | Два корня | Один корень кратности 2 (другими словами, два равных корня) | Действительных корней нет |
Формула | — |
- Формулу (1) можно получить следующим образом:
- Умножаем каждую часть на
и прибавляем
:
- Формула для случая
является частным случаем формулы (1):
- Для случая
отсутствие вещественных корней также следует из формулы (1), поскольку квадратный корень из отрицательного числа не принадлежит множеству вещественных чисел.
Следствия:
- трёхчлен
есть полный квадрат суммы или разности в том и только в том случае, если
;
- Дискриминант можно найти по формуле:
;
.
Данный метод универсальный, однако не единственный.
II способ. Корни квадратного уравнения при чётном коэффициенте b
Для уравнений вида , то есть при чётном
, где
вместо формулы (1) для нахождения корней существует возможность использования более простых выражений.
Примечание: данные ниже формулы можно получить, подставив в стандартные формулы выражение b = 2k, через несложные преобразования.
неприведённое | приведённое | D > 0 | неприведённое | приведённое |
удобнее вычислять значение четверти дискриминанта: Все необходимые свойства при этом сохраняются. | ||||
D = 0 |
III способ. Решение неполных квадратных уравнений
К решению неполных квадратных уравнений практикуется особый подход. Рассматриваются три возможных ситуации.
|
Такое уравнение обязательно имеет два действительных корня, причём один из них всегда равен нулю. |
IV способ. Использование частных соотношений коэффициентов
Существуют частные случаи квадратных уравнений, в которых коэффициенты находятся в соотношениях между собой, позволяющих решать их гораздо проще.
Корни квадратного уравнения, в котором сумма старшего коэффициента и свободного члена равна второму коэффициенту
Если в квадратном уравнении сумма первого коэффициента и свободного члена равна второму коэффициенту:
, то его корнями являются
и число, противоположное отношению свободного члена к старшему коэффициенту (
).
Способ 1. Сначала выясним, действительно ли такое уравнение имеет два корня (в том числе, два совпадающих):
.
Да, это так, ведь при любых действительных значениях коэффициентов , а значит и дискриминант неотрицателен. Таким образом, если
, то уравнение имеет два корня, если же
, то оно имеет только один корень. Найдём эти корни:
.
В частности, если , то корень будет один:

Используем геометрическую модель корней квадратного уравнения: их мы будем рассматривать как точки пересечения параболы с осью абсцисс. Всякая парабола вне зависимости от задающего её выражения является фигурой, симметричной относительно прямой
. Это означает, что отрезок всякой перпендикулярной к ней прямой, отсекаемый на ней параболой, делится осью симметрии пополам. Сказанное, в частности, верно и для оси абсцисс. Таким образом, для всякой параболы справедливо одно из следующих равенств:
(если
) или
(если верно неравенство противоположного смысла). Используя тождество
, выражающее геометрический смысл модуля, а также принимая, что
(это можно доказать, подставив равенство в квадратный трёхчлен:
, поэтому -1 - корень такого уравнения) , приходим к следующему равенству:
Если учитывать, что разность в том случае, когда мы прибавляем модуль, всегда положительна, а в том, когда отнимаем - отрицательна, что говорит о тождественности этих случаев, и, к тому же, помня о равенстве
, раскрываем модуль:
. Во втором случае, совершив аналогичные преобразования, придём к тому же результату, ч. т. д.
Способ 3 [разложение на множители].
Совершим подстановку условия в уравнение
. Тогда
Откуда
либо
.
Способ 4 [эвристический]. Применим следующее соображение: «Если для объектов ,
и
найдутся такие ненулевые числа
и
, что выполняется равенство
, тогда
либо же
(
)», в истинности которого несложно убедиться. Уравнение
представим в виде
. С учётом того, что
и написанного выше, делаем вывод:
, или, что то же самое,
. Второй (отличный от этого) корень ищется по формуле
. Применяя основное свойство дроби (
) и свойство алгебраического равенства (умножение на
), получим требуемый результат:
.
- Отсюда следует, что перед решением какого-либо квадратного уравнения целесообразна проверка возможности применения к нему этой теоремы: сравнить сумму старшего коэффициента и свободного члена со вторым коэффициентом.
Корни квадратного уравнения, сумма всех коэффициентов которого равна нулю
Если в квадратном уравнении сумма всех его коэффициентов равна нулю (), то корнями такого уравнения являются
и отношение свободного члена к старшему коэффициенту (
).
Способ 1. Прежде всего заметим, что из равенства следует, что
Установим количество корней:
При любых значениях коэффициентов уравнение имеет хотя бы один корень: действительно, ведь при любых значениях коэффициентов , а значит и дискриминант неотрицателен. Обратите внимание, что если
, то уравнение имеет два корня, если же
, то только один. Найдём эти корни:
что и требовалось доказать.
- В частности, если
, то уравнение имеет только один корень, которым является число
.
Способ 2. Пользуясь данным выше определением корня квадратного уравнения, обнаруживаем путём подстановки, что число 1 является таковым в рассматриваемом случае: - верное равенство, следовательно, единица - корень такого вида квадратных уравнений. Далее, по теореме Виета находим второй корень: согласно этой теореме, произведение корней уравнения равно числу, равному отношению свободного члена к старшему коэффициенту -
, ч.т.д.
- Отсюда следует, что перед решением уравнения стандартными методами целесообразна проверка применимости к нему этой теоремы, а именно сложение всех коэффициентов данного уравнения и установление, не равна ли нулю эта сумма.
V способ. Разложение квадратного трёхчлена на линейные множители
Если трёхчлен вида удастся каким-либо образом представить в качестве произведения линейных множителей
, то можно найти корни уравнения
— ими будут
и
, действительно, ведь
а решив указанные линейные уравнения, получим вышеописанное. Квадратный трёхчлен не всегда раскладывается на линейные множители с действительными коэффициентами: это возможно, если соответствующее ему уравнение имеет действительные корни.
Рассматриваются некоторые частные случаи.
Использование формулы квадрата суммы (разности)
Если квадратный трёхчлен имеет вид , то применив к нему названную формулу, можно разложить его на линейные множители и, значит, найти корни:
Выделение полного квадрата суммы (разности)
Также названную формулу применяют, пользуясь методом, получившим названия «выделение полного квадрата суммы (разности)». Применительно к приведённому квадратному уравнению с введёнными ранее обозначениями, это означает следующее:
- прибавляют и отнимают одно и то же число:
.
- применяют формулу к полученному выражению, переносят вычитаемое и свободный член в правую часть:
- извлекают из левой и правой частей уравнения квадратный корень и выражают переменную:
Примечание: данная формула совпадает с предлагаемой в разделе «Корни приведённого квадратного уравнения», которую, в свою очередь, можно получить из общей формулы (1) путём подстановки равенства a = 1. Этот факт не просто совпадение: описанным методом, произведя, правда, некоторые дополнительные рассуждения, можно вывести и общую формулу, а также доказать свойства дискриминанта.
VI способ. Использование прямой и обратной теоремы Виета
Прямая теорема Виета (см. ниже) и обратная ей теорема позволяют решать приведённые квадратные уравнения устно, не прибегая к вычислениям по формуле (1).
Согласно обратной теореме, всякая пара чисел (число) , будучи решением системы уравнений
- являются корнями уравнения
.
Подобрать устно числа, удовлетворяющие этим уравнениям, поможет прямая теорема. С её помощью можно определить знаки корней, не зная сами корни. Для этого следует руководствоваться правилом:
- 1) если свободный член отрицателен, то корни имеют различный знак, и наибольший по модулю из корней — знак, противоположный знаку второго коэффициента уравнения;
- 2) если свободный член положителен, то оба корня обладают одинаковым знаком, и это — знак, противоположный знаку второго коэффициента.
VII способ. Метод «переброски»
По своей сущности метод «переброски» является просто модификацией теоремы Виета.
Метод «переброски» — это сведение уравнения, которое нельзя привести так, чтобы все коэффициенты остались целыми, к приведённому уравнению с целыми коэффициентами:
- 1) умножаем обе части на старший коэффициент:
- 2) заменяем
Далее решаем уравнение относительно по методу, описанному выше, и находим
.
Сумма коэффициентов при степенях введённого неизвестного равна нулю, поэтому
Возвращаемся к «старой» переменной:
Ответ: .
Графическое решение квадратного уравнения

Графиком квадратичной функции является парабола. Решениями (корнями) квадратного уравнения называют абсциссы точек пересечения параболы с осью абсцисс. Если парабола, описываемая квадратичной функцией, не пересекается с осью абсцисс, уравнение не имеет вещественных корней. Если парабола пересекается с осью абсцисс в одной точке (в вершине параболы), уравнение имеет один вещественный корень (также говорят, что уравнение имеет два совпадающих корня). Если парабола пересекает ось абсцисс в двух точках, уравнение имеет два вещественных корня (см. изображение справа.)
Если коэффициент положительный, ветви параболы направлены вверх и наоборот. Если коэффициент
положительный (при положительном
, при отрицательном наоборот), то вершина параболы лежит в левой полуплоскости и наоборот.
Графический способ решения квадратных уравнений
Помимо универсального способа, описанного выше, существует так называемый графический способ. В общем виде этот способ решения рационального уравнения вида заключается в следующем: в одной системе координат строят графики функций
и
и находят абсциссы общих точек этих графиков; найденные числа и будут корнями уравнения.
- Есть всего пять основных способов графического решения квадратных уравнений.
Приём I
Для решения квадратного уравнения строится график функции
и отыскиваются абсциссы точек пересечения такого графика с осью
.
Приём II
Для решения того же уравнения этим приёмом уравнение преобразуют к виду и строят в одной системе координат графики квадратичной функции
и линейной функции
, затем находят абсциссу точек их пересечения.
Приём III
Данный приём подразумевает преобразование исходного уравнения к виду , используя метод выделения полного квадрата суммы (разности) и затем в
. После этого строятся график функции
(им является график функции
, смещённый на
единиц масштаба вправо или влево в зависимости от знака) и прямую
, параллельную оси абсцисс. Корнями уравнения будут абсциссы точек пересечения параболы и прямой.
Приём IV
Квадратное уравнение преобразуют к виду , строят график функции
(им является график функции
, смещённый на
единиц масштаба вверх, если этот коэффициент положителен, либо вниз, если он отрицателен), и
, находят абсциссы их общих точек.
Приём V
Квадратное уравнение преобразуют к особому виду:
затем
Совершив преобразования, строят графики линейной функции и обратной пропорциональности
, отыскивают абсциссы точек пересечения этих графиков. Этот приём имеет границу применимости: если
, то приём не используется.
Решение квадратных уравнений с помощью циркуля и линейки
Описанные выше приёмы графического решения имеют существенные недостатки: они достаточно трудоёмки, при этом точность построения кривых — парабол и гипербол — низка. Указанные проблемы не присущи предлагаемому ниже методу, предполагающему относительно более точные построения циркулем и линейкой.
Чтобы произвести такое решение, нужно выполнить нижеследующую последовательность действий.
- Построить в системе координат
окружность с центром в точке
, пересекающую ось
в точке
.
- Далее возможны три случая:
- длина радиуса окружности превышает длину перпендикуляра к оси абсцисс, опущенного из точки
: в этом случае окружность пересекает ось
в двух точках, а уравнение имеет два действительных корня, равных абсциссам этих точек;
- радиус равен перпендикуляру: одна точка и один вещественный корень кратности 2;
- радиус меньше перпендикуляра: корней в множестве
нет.
- длина радиуса окружности превышает длину перпендикуляра к оси абсцисс, опущенного из точки

Рассматриваемый способ предполагает построение окружности, пересекающей ось ординат в точках (точке), абсциссы которых являются корнями (или корнем) решаемого уравнения. Как нужно строить такую окружность? Предположим, что она уже построена. Окружность определяется однозначно заданием трёх своих точек. Пусть в случае, если корня два, это будут точки , где
, естественно, действительные корни квадратного уравнения (подчёркиваем: если они имеются). Найдём координаты центра такой окружности. Для этого докажем, что эта окружность проходит через точку
. Действительно, согласно теореме о секущих, в принятых обозначениях выполняется равенство
(см рисунок). Преобразовывая это выражение, получаем величину отрезка OD, которой и определяется искомая ордината точки D:
(в последнем преобразовании использована теорема Виета (см. ниже в одноимённом разделе)). Если же корень один, то есть ось абсцисс будет касательной к такой окружности, и окружность пересекает ось y в точке с ординатой 1, то она обязательно пересечёт её и в точке с указанной выше ординатой (в частности, если 1=c/a, это могут быть совпадающие точки), что доказывается аналогично с использованием уже теоремы о секущей и касательной, являющаяся частным случаем теоремы о секущих. В первом случае (
), определяющими будут точка касания, точка оси y с ординатой 1, и её же точка с ординатой
. Если c/a и 1 - совпадающие точки, а корня два, определяющими будут эта точка и точки пересечения с осью абсцисс. В случае, когда (1=c/a) и корень один, указанных сведений достаточно для доказательства, так как такая окружность может быть только одна - её центром будет вершина квадрата, образуемого отрезками касательных и перпендикулярами, а радиус - стороне этого квадрата, составляющей 1. Пускай S - центр окружности, имеющей с осью абсцисс две общие точки. Найдём его координаты: для этого опустим от этой точки перпендикуляры к координатным осям. Концы этих перпендикуляров будут серединами отрезков AB и CD - ведь треугольники ASB и CSD равнобедренные, так как в них AS=BS=CS=DS как радиусы одной окружности, следовательно, высоты в них, проведённые к основаниям, также являются и медианами. Найдём координаты середин названных отрезков. Так как парабола симметрична относительно прямой
, то точка этой прямой с такой же абсциссой будет являться серединой отрезка AB. Следовательно, абсцисса точки S равна этому числу. В случае же, если уравнение имеет один корень, то ось x является касательной по отношению к окружности,поэтому, согласно её свойству, её радиус перпендикулярен оси, следовательно, и в этом случае указанное число - абсцисса центра. Её ординату найдём так:
. В третьем из возможных случаев, когда c\a=1 (и, значит, a=c), то
.
Итак, нами найдены необходимые для построения данные. Действительно, если мы построим окружность с центром в точке , проходящую через точку
, то она, в случаях, когда уравнение имеет действительные корни, пересечёт ось x в точках, абсциссы которых есть эти корни. Причём, если длина радиуса больше длины перпендикуляра к оси Ox, то уравнение имеет два корня (предположив обратное, мы бы получили противоречие с доказанным выше), если длины равны, то один (по той же причине), если же длина радиуса меньше длины перпендикуляра, то окружность не имеет общих точек с осью x, следовательно, и действительных корней у уравнения нет (доказывается тоже от противного: если корни есть, то окружность, проходящая через A, B, C совпадает с данной, и поэтому пересекает ось, однако она не должна пересекать ось абсцисс по условию, значит, предположение неверно).
Корни квадратного уравнения на множестве комплексных чисел
Уравнение с действительными коэффициентами
Квадратное уравнение с вещественными коэффициентами всегда имеет с учётом кратности два комплексных корня, о чём гласит основная теорема алгебры. При этом, в случае неотрицательного дискриминанта корни будут вещественными, а в случае отрицательного — комплексно-сопряжёнными:
- при
уравнение будет иметь два вещественных корня:
- при
— один корень кратности 2 (другими словами, два одинаковых корня):
- при
— два комплексно-сопряжённых корня, выражающихся той же формулой, что и для положительного дискриминанта. Также её можно переписать так, чтобы она не содержала отрицательного подкоренного выражения, следующим образом:
Уравнение с комплексными коэффициентами
В комплексном случае квадратное уравнение решается по той же формуле (1) и указанным выше её вариантам, но различимыми являются только два случая: нулевого дискриминанта (один двукратный корень) и ненулевого (два корня единичной кратности).
Корни приведённого квадратного уравнения
Квадратное уравнение вида в котором старший коэффициент
равен единице, называют приведённым. В этом случае формула для корней (1) упрощается до
Мнемонические правила:
- Из «Радионяни»:
«Минус» напишем сначала,
Рядом с ним p пополам,
«Плюс-минус» знак радикала,
С детства знакомого нам.
Ну, а под корнем, приятель,
Сводится всё к пустяку:
p пополам и в квадрате
Минус прекрасноеq.
- Из «Радионяни» (второй вариант):
p, со знаком взяв обратным,
На два мы его разделим,
И от корня аккуратно
Знаком «минус-плюс» отделим.
А под корнем очень кстати
Половина p в квадрате
Минус q — и вот решенья,
То есть корни уравненья.
- Из «Радионяни» (третий вариант на мотив Подмосковных вечеров):
Чтобы x найти к половине p,
Взятой с минусом не забудь,
Радикал приставь с плюсом минусом,
Аккуратно, не как-нибудь.
А под ним квадрат половины p,
Ты, убавь на q и конец,
Будет формула приведенная,
Рассуждений твоих венец.
Будет формула приведенная,
Рассуждений твоих венец.
Теорема Виета
Формулировка для приведённого квадратного уравнения
Сумма корней приведённого квадратного уравнения (вещественных или комплексных) равна второму коэффициенту
, взятому с противоположным знаком, а произведение этих корней — свободному члену
:
С его помощью приведённые уравнения можно решать устно:
Для неприведённого квадратного уравнения
В общем случае, то есть для неприведённого квадратного уравнения
На практике (следуя методу «переброски») для вычисления корней применяется модификация теорема Виета:
по которой можно устно находить ax1, ax2, а оттуда — сами корни:
Но у некоторых неприведённых уравнений корни можно устно угадать даже по стандартной теореме Виета:
Разложение квадратного трёхчлена на множители и теоремы, следующие из этого
Если известны оба корня квадратного трёхчлена, его можно разложить по формуле
(2)
Доказательство
Для доказательства этого утверждения воспользуемся теоремой Виета. Согласно этой теореме, корни и
квадратного уравнения
образуют соотношения с его коэффициентами:
. Подставим эти соотношения в квадратный трёхчлен:
В случае нулевого дискриминанта это соотношение становится одним из вариантов формулы квадрата суммы или разности.
- Из формулы (2) имеются два важных следствия:
Следствие 1
- Если квадратный трёхчлен раскладывается на линейные множители с вещественными коэффициентами, то он имеет вещественные корни.
Доказательство
Пусть . Тогда, переписав это разложение, получим:
.
Сопоставив полученное выражение с формулой (2), находим, что корнями такого трёхчлена являются и
. Так как коэффициенты вещественны, то и числа, противоположные их отношениям также являются элементами множества
.
Следствие 2
- Если квадратный трёхчлен не имеет вещественных корней, то он не раскладывается на линейные множители с вещественными коэффициентами.
Доказательство
Действительно, если мы предположим противное (что такой трёхчлен раскладывается на линейные множители), то, согласно следствию 1, он имеет корни в множестве , что противоречит условию, а потому наше предположение неверно, и такой трёхчлен не раскладывается на линейные множители.

f (x) = x2 − x − 2 = (x + 1)(x − 2) действительной переменной x, x — координаты точки, где график пересекает ось абсцисс, x = −1 и x = 2, являются решениями квадратного уравнения: x2 − x − 2 = 0.
Уравнения, сводящиеся к квадратным
Алгебраические
Уравнение вида является уравнением, сводящимся к квадратному.
В общем случае оно решается методом введения новой переменной, то есть заменой где
— множество значений функции
, c последующим решением квадратного уравнения
.
Также при решении можно обойтись без замены, решив совокупность двух уравнений:
и
К примеру, если , то уравнение принимает вид:
Такое уравнение 4-й степени называется биквадратным.
С помощью замены
к квадратному уравнению сводится уравнение
известное как возвратное или обобщённо-симметрическое уравнение.
Дифференциальные
Линейное однородное дифференциальное уравнение с постоянными коэффициентами второго порядка
подстановкой сводится к характеристическому квадратному уравнению:
Если решения этого уравнения и
не равны друг другу, то общее решение имеет вид:
, где
и
— произвольные постоянные.
Для комплексных корней можно переписать общее решение, используя формулу Эйлера:
википедия, вики, книга, книги, библиотека, статья, читать, скачать, бесплатно, бесплатное скачивание, мобильный, телефон, андроид, ios, apple, мобильный телефон, ПК, веб, компьютер, информация о Квадратное уравнение, Что такое Квадратное уравнение? Что означает Квадратное уравнение?
Оставить ответ
Хотите присоединиться к обсуждению?Не стесняйтесь вносить свой вклад!